Journal of Organometallic Chemistry, 74 (1974) C21-C22 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

INTERACTION OF h^3 -ALLYL (CROTYL) PALLADIUM CHLORIDE WITH ALLYL HALIDES

L.F. SHELOHNEVA, I.A. POLETAYEVA, N.A. KARTSIVADZE and V.A. KORMER S.V. Lebedev All-Union Scientific Research Institute of Synthetic Rubber, Leningrad (U.S.S.R.) (Received May 6th, 1974)

Reactions of h^3 -allylic palladium complexes with allyl(alkyl) halides have not been reported. In studying these reactions we found that in the presence of allyl iodide h^3 -crotylpalladium chloride undergoes transformation to give h^3 allylpalladium iodide and h^3 -crotylpalladium iodide (molar ratio 2/1). The conversion in a toluene solution at 20°C after a period of 20 h amounts to 50%. The formation of h^3 -allylpalladium iodide was revealed by NMR study of the system h^3 -perdeuteropalladium chloride—allyl iodide. This fact as well as the formation of h^3 -crotylpalladium iodide is also supported by the composition of the organic products formed in the reaction. Using gas-liquid chromatography the following compounds were found in solution: allyl chloride, 3-chloro-1butene and 1-chloro-2-butene (see Table 1). An increase in the reaction temperature and the replacement of toluene by dimethylformamide (DMF) lead to a higher total yield of the exchange products with simultaneous increase in the extent of the exchange reaction in which chloro-anion is replaced by iodo anion (see Table 1).

When h^3 -allylpalladium chloride is treated with crotyl iodide in a toluene solution the only reaction to occur is the exchange of acido ligands. In the

Products	Yield in mole % based on the initial complex				
	toluene at 20°C	DMF at 20°C	toluene at 50°C		
	$[h^3 - C_4 H_7 P dCl]_2 + C_3 H_5 I$				
Allyl chloride	14	53	44		
3-Chloro-1-butene	14	16	9		
1-Chloro-2-butene	22	31	8		
	$[h^3 - C_3 H_5 PdCl]_2 + C_4 H_7 I$				
Allyl chloride		7	_		
3-Chloro-1-butene	50	10	-		
1-Chloro-2-butene	38	42	_		

TABLE 1

	2		
ΙΝΤΈΡ ΔΟΤΙΟΝ ΟΓ	' ⁶ - CD CTVI / AT.I.VI.\DAT.I.A DIIII	THE PARTY OF THE STREET	ALLYI (CDOWVI) IODIDER
THE TRUCTOR OF OF	" - CROIINGRADION	I CHDORIDES WITH	ADDIMENTOTICICOLICE

dimethylformamide medium, small amounts of allyl chloride are formed along with chlorobutenes.

Allyl chloride does not react with h^3 -crotylpalladium chloride.

Thus, the reaction of h^3 -crotyl(allyl)palladium chlorides with allyl(crotyl) iodides consists in the exchange of ligands, while nickel complexes under similar conditions give predominantly the products of cross-coupling [1, 2].

References

1 E.G. Corey, M.F. Semmelhack, J. Amer. Chem. Soc., 89 (1967) 2755.

2 L.F. Shelohneva, I.A. Poletayeva, N.A. Kartsivadze and V.A. Kormer, in press.